

 -1-

Semantics and Implementation of Type
Dynamic Modifications1

Mohammed Erradi, Gregor v. Bochmann, and Rachida Dssouli

Université de Montréal, Dept. I.R.O.
Faculté des Arts et des Sciences, CP. 6128, Succ. “A”

Montréal, (Québec) Canada H3C-3J7

Email: {erradi, bochmann, dssouli} @iro.umontreal.ca
fax: (514)343-5834

Abstract

The ability to dynamically make a variety of changes, to the persistent object-oriented

language type definitions, is an important requirement for systems designers. This is

known as schema evolution in object-oriented databases. In this paper,we study type

modifications within a persistent object-oriented language that is particularly suitable

for distributed systems modeling and specification. To ensure the consistency of the

evolving system, where types dynamically change, we introduce two relations: structural

consistency and behavioral conformance. While structural consistency deals with the

static aspect of the evolving system, the behavioral conformance deals with the dynamic

aspect of the system. Then we present a reflection based implementation, using meta-

objects, to allow dynamic modifications of types and instances.

Key words: Types, Reflection, object-oriented programming, dynamic change, system

evolution.

1 "This research was supported by a grant from the Canadian Institute for Telecommunications Research

under the NCE program of the Government of Canada".

 -2-

1. Introduction

In a wide spectrum of applications, system specifications require modifications to

accommodate evolutionary change, particularly for those systems with long expected

lifetime. They need to evolve along with changes of human needs, technology and/or the

application environment. The changes may require modifications of certain functions

already provided by the system, or some extension introducing new functions. In general,

evolutionary changes are difficult to accommodate because they cannot be predicted at

the time the system is designed [Kram 85]. So, systems should be sufficiently flexible to

permit arbitrary, incremental changes.

Software developers or database designers working with an object oriented system are

frequently led to modify existing classes so that they suit their needs. This is typically

achieved by adding or removing attributes, reimplementing methods, rearranging

inheritance links, etc. Such modifications indicate that the existing classes are not

entirely satisfactory. Recently, research in class modifications are intensively

investigated in object oriented databases field [Bane 87], [Jaco 87], [Skar 87], and [Lern

90]. There, the available methods determine the consequences of class changes on other

classes and on existing instances as well, so that possible integrity constraints violations

can be avoided. A major concern in designing a class modification methodology is how

to bring existing objects in line with a modified class.

Skarra and Zdonik [Skar 87] explore an approach in which filters are placed between

instances of an older version of a class and methods that expect instances of a newer

version of the class. The Orion system [Bane 87] employs screening on objects presented

to an application. The representations of objects are corrected as they are used; this is

effectively a late binding on the representation of objects. The Gemstone system [Jaco

87] use the conversion approach; when a class is modified, the system attempt to convert

the underlying database to conform to the new class definition and thus maintain a

consistent database.

While most of the existing approaches [Bane 87], [Jaco 87], and [Delc 91] address

structural consistency, behavioral consistency remains only a design objective. The

methodology of Skarra and Zdonik [Skar 87] goes a long way toward preserving

behavior. But the problem they address go beyond type modification to versioning of

 -3-

types, objects, and methods. We are exploring solutions to type modification that do not

require versioning. All these approaches are restricted to sequential languages, however

we designed RMondel [Erra 91]i.e., a reflective version of Mondel) that is a concurrent

object-oriented language suitable for distributed systems modeling and specification, and

supports type dynamic modifications. In distributed systems, objects' behaviors are of

extreme importance, so behavioral consistency need to be carefully addressed. The

existing approaches are all static in that classes can not be changed when the system is

operating. In this paper, we present our approach to ensure both structural and behavioral

consistencies for dynamic type and instance modifications.

The paper is organized as follows. Section 2 gives an overview of the original Mondel

language and its important characteristics. Section 3 introduces the structural consistency

and behavioral conformance relations. In Section 4, we provide a framework for type

modifications, in terms of a set of invariants that correspond to the static semantics rules

of the underlying language. We also define the semantics of each type change. Further,

through illustrative examples we introduce the allowed behavior modifications where the

behavioral conformance relation holds. In Section 5 we address the impact of type

modifications on existing instances. Section 6 discusses RMondel and the reflection

based implementation issues. Conclusions are drawn in Section 7.

2. Mondel Overview

We have developed Mondel: An object-oriented specification language [Boch 90] with

certain particular features, such as multiple inheritance, type checking, rendezvous

communication between objects, the possibility of concurrent activities performed by a

single object, object persistence and the concept of transaction. Mondel is particularly

suitable for modeling and specifying applications in distributed systems. Mondel has a

formal semantics, expressed by means of a translation into a state transition system. An

object is an instance of a type definition (i.e., called class in most object-oriented

languages) that specifies the properties that are satisfied by all its instances. Each

Mondel object has an identity, a certain number of named attributes (i.e., each object

instance will have fixed references to other object instances, one for each attribute), and

acceptable operations which are externally visible and represent actions that can be

invoked by other objects.

 -4-

A Mondel specification corresponds to a type lattice. In such a lattice, types are linked by

mean of the inheritance relation. The implementation of such a specification consists of a

set of objects (i.e, instances) that run in parallel. Each object has its individual behavior

which provides certain details as constraints on the order of the execution of operations

by the object, and determines properties of the possible returned results of these

operations. Among the actions related to the execution of an operation, the object may

also invoke operations on other objects. Basically, communication between objects is

synchronous, based on remote procedure call or rendezvous mechanism. An operation

call is syntactically represented by the “!” operator. For instance in the statement m!

InsertCoin (see line 27 of Fig.2.3.), “m” designates the called object, and InsertCoin is

an operation defined within the type of “m” (i.e., the type Machine). In the following

we discuss those aspects of Mondel which are necessary for the discussions of type

modifications.

Each Mondel object is of a given type. A type definition specifies the properties that are

satisfied by all instances of that type.

definition1: An object type definition t consists of an interface It and a behavior Bt

definitions : It = { At, Opt } where: At is the set of attributes and Opt is the set of

operations; and Bt is the behavior definition for objects of the type t.

 [end of

definition1]

2.1. Mondel statements

Objects behaviors are specified using Mondel statements. In the following, we consider a

subset of Mondel language as shown in Fig.2.1. This Mondel subset will be considered

for the modification of objects’ behaviors. For a full description of Mondel , we refer the

reader to [Boch 90].

- Attr ! OpName : call of the operation "OpName" on the object refered by "Attr".
- accept OpName do Stat end : acceptance of an operation. "Stat" can be one of the
 statements listed here.
- return : the end of a rendezvous.
- ProcName : procedure instantiation.
- Stat1 ; Stat2 : sequential composition.
- choice Stat1 or Stat2 end : either "Stat1" or "Stat2" is executed.
- Parallel Stat1 and Sat2 end : "Stat1" and "Stat2" are executed in parallel (pure interleaving).
- Loop Stat end : cyclic behavior can also be defined implicitly, by recursive
 procedure call.

 -5-

Fig.2.1. subset of Mondel Statements

Mondel has a formal semantics which associates a meaning to the valid language

sentences. The formal semantics of Mondel was defined based on the operational

approach. In this approach an abstract machine simulates the real computer role. The

meaning of a specification is expressed in terms of actions made by the abstract machine.

We more particularly applied the technique of Plotkin [Plot 81] where state/transition

systems are taken as machine models. The Mondel formal semantics is the basis for the

verification of Mondel specifications [Barb 90b], and has been used for the construction

of an interpreter [Will 90].

2.2. Objects structure

 Each Mondel object has the following aspects:

- An identity: Objects obtain a system wide identifier when they are created. The

identifier of an object serves as a reference to it and is used to refer to the object when it

is passed as an actual attribute to a newly created object, or as a parameter or a result of

an operation.

- Attributes: An object type may include a certain number of named attributes. This

means that each object instance of that type will have a fixed references to other object

instances, one for each attribute. An attribute may be declared non-visible; by default, an

attribute is visible which means that any object "knowing" the object may also access its

attributes. It may also be declared internal, which means that it is defined by the internal

behavior of the object; otherwise it must be provided as effective parameter when the

object instance is created.

- Operations: They define the functions and procedures that the object can accept during

execution. The operations are externally visible and represent actions that can be invoked

by other objects. An object may have internal procedures which can be called from

within the object behavior.

- Typing: Mondel supports strong type checking based on the declared object types.

Generic types (i.e. with type parameters) are also supported. Therefore the type

consistency of the effective parameters of operation invocations and object instantiations

can be checked by a compiler.

 -6-

- Behavior: It provides certain details as constraints on the order of execution of

operations by the object, and also determines properties of the possible returned results of

these operations. Among the actions related to the execution of an operation, the object

may also invoke operations on other objects.

- Inheritance: Types can be related to each other by means of the inheritance relation.

Mondel allows a form of multiple inheritance where a given type may inherit from

several supertypes as long as the inherited properties are without conflicts.

2.3. Example

In the following we show an example using Mondel language. This example will be used

through the paper. Let us consider a vending machine which receives a coin and delivers

candies to its user. In this example, we suppose that the machine delivers only candies.

We distinguish two types of objects: the type Machine and the type User, as shown in

Mondel specification of Fig.2.3. The relation between the Machine and the User is

expressed by the fact that the user knows the machine. Such a relation is modeled by the

attribute “m” defined in the User type.

The user is initially in a Thinking state, and when he decides to buy a candy he inserts a

coin. After the coin has been accepted, the user enters the GetCandy state. Then the user

pushes the machine's button to get a candy. Once the candy is delivered, the user enters

the Thinking state again. The machine is initially in the Ready state, ready to accept a

coin. Once a coin is inserted, the machine accepts the coin and then enters the

DeliverCandy state. After the user has pushed the button of the machine, the latter

delivers a candy and becomes Ready to accept another coin. Fig.2.2 shows the main

states and transitions diagrams of the vending machine example.

Ready

Accept InsertCoin

Accept PushButtonAndGetCandy

DeliverCandy

Machine

Thinking

m! InsertCoin

m! PushButtonAndGetCandy

User

GetCandy

Fig.2.2. State/transition diagram of the vending machine example

 -7-

Note that object operations model the occurrences of events. The behavior of the vending

machine system is defined as the composition of interacting objects (i.e., Machine and

User objects). The object types are specified using a state oriented style [Viss 88]. Each

object internal state is modelled as one Mondel procedure. We interpret the operations of

an object of type Machine, as follows:

InsertCoin : the machine object is ready to accept a coin from the environment, and when

the coin is inserted the machine changes its state to become ready to deliver a candy.

PushButtonAndGetCandy : The machine object waits for the button to be pushed after a

coin has been inserted, and the machine delivers a candy.

Fig.2.3. Mondel specification of the Machine and User types

3. Consistency relations

The change of the structure and behavior of types and/or named objects, must be done

without resulting in run-time errors, blocking, or any other uncontrollable situation. So

the semantics of type changes should ensure that a modified system (i.e., executable

specification) remains consistent. For this purpose our interpretation of system

consistency consists of the composition of two relations. The first relation maintains a

1 type Machine = object with
2 operation
3 InsertCoin;
4 PushButtonAndGetCandy;
5 behavior
6 Ready
7 where
8 procedure Ready =
9 accept InsertCoin do
10 return;
11 end;
12 DeliverCandy;
13 endproc Ready

14 procedure DeliverCandy =
15 accept PushButtonAndGetCandy do
16 return;
17 end;
18 Ready;
19 endproc DeliverCandy

20 endtype Machine

21 type User = object with
22 m: Machine;
23 behavior
24 Thinking
25 where
26 procedure Thinking =
27 m! InsertCoin;
28 GetCandy;
29 endproc Thinking

30 procedure GetCandy =
31 m! PushButtonAndGetCandy;
32 Thinking;
33 endproc GetCandy

34 endtype User

 -8-

structural consistency, while the second is concerned with behavioral conformance. In

the following we introduce the basic definitions that are useful for type modifications.

definition2: An object type interface It’= { At', Opt' } is compatible with another object

type interface It = { At, Opt } if and only if:

- The type t' has (at least) all the attributes defined for the type t (i.e., At' �At); the

inherited attributes may be more specialized.
- The type t' has (at least) all the operations defined for the type t (i.e., Opt' �Opt), where

the operations result must be compatible and the input parameters must be inversely

compatible [Blac 87].

 [end of

definition2]

definition3: An object type t’ is structurally consistent with an object type t if and only
if: It’ is compatible with It, where It’ and It are the interfaces of t’ and t respectively.

 [end of

definition3]

If we ignore operations parameters, our interpretation for the behavioral conformance

relation that we note conform, will be similar to the extension relation defined for

LOTOS specifications [Brin 86]. LOTOS is an internationally standardized formal

description technique designed for the specification of OSI protocols and services. We

introduce the conform relation as follows:

definition4: The behavior defined for the object type t’ conforms to the behavior defined

for the object type t if the following properties are satisfied:

property1. Any object of type t’ does what is explicitly allowed according to the type t

(but it may do more).

property2. What an object of type t’ refuses to do (i.e., blocking), after any behavior that

is explicitly specified, can be refused according to the type t (an object of type t’ may not

“refuse more”).

 [end of

definition4]

 It is important to note that for many authors the concept of inheritance is only concerned

with the names and parameter types of the operations that are offered by the specified

 -9-

type as, for instance, in Emerald [Blac 87] and Eiffel [Meye 88]. However, there are

other important aspects to inheritance which considers comparing the dynamic behavior

of objects [Amer 87], [Amer 89], including constraints on the results of operations, the

ordering of operation execution, and the possibilities of blocking [Boch 89].

Our interpretation of inheritance can be defined by taking into account the dynamic

behavior of objects as follows:

definition5: An object type t’ inherits from an object type t if and only if :
 It’ is compatible with It.

 and t’ conforms to t .

 [end of

definition5]

The constraints defined by the above definition, will be used to ensure the system

consistency while the system changes.

4. Type definition Modifications

We are mainly interested in the modifications of a system S which lead to a consistent

system S' using an incremental approach. The incremental approach consists in building

the system S' by successive enhancements to the existing system S. Such a system

consists of a type lattice, where nodes represent types and edges represent the inheritance

relationship. So the modification of the system corresponds to the modification of the

types and/or the type lattice.

In this section, we present our framework for both object type structure and behavior

modifications. For the structure modification we introduce a set of properties called

invariants that must be preserved to ensure structural consistency. Then we introduce the

basic type modification primitives, and we define their semantics. For the behavior

modifications we study, through some examples, the behavior modifications allowed by

the behavioral conformance relation.

4.1. Structure modifications

The modifications of types structures must be done in a way to ensure that the lattice

remains consistent, and the objects instances conform in some way to the modified types.

 -10-

We define a set of invariants that must be satisfied by each type and its related types in

the lattice.

4.1.1. Structural consistency

In this section, we discuss the invariants that must be preserved across Mondel type

modifications. The invariants define mainly the consistency requirements of the type

lattice, which corresponds to the static semantic rules of Mondel. The type lattice and full

inheritance invariants are similar the those presented for ORION [Bane 87].

Type Lattice Invariant

The type lattice is seen as a directed acyclic graph, where the root is a system-defined

type called OBJECT , and each node (i.e., a type) is reachable from the root. Each type in

the lattice has a unique name.

Distinct Name Invariant

All attribute and operation names of a type, wether defined or inherited, are distinct.

Object Representation Invariant

Each object in the system is an instance of a type. So the object’s structure must be as

specified by its type.

Full Inheritance Invariant

A type inherits all attributes and operations from each of its supertypes. Name conflict is

not addressed here, but may be avoided in a similar way as in [Delc 91].

Type Compatibility Invariant

If an attribute A2 of a type T is inherited from an attribute A1 of a supertype of T, then

the type of A2 is either the same as that of A1, or a subtype of the type of A1.

In order to keep a system in a consistent state, these invariants must be preserved by each

type (or instance) and its related types in the lattice. The invariants are checked when an

object is created, in order to maintain compatibility rules between attribute values and

their corresponding types. These invariants are also checked during type updates.

4.1.2. Operations for type structure modifications

 -11-

 In this section, we classify all type modifications that we support in RMondel, and define

the semantics of type modifications based on the invariants introduced above.

Basic type update primitives.

Updates are classified in three categories: Updates to the type structure which

corresponds to the contents of a node in the type lattice, to a node in the type lattice, and

to an edge in the type lattice. In the following we present a list of basic updates one can

perform on a type specification.

1. Modifications to the contents of a node in the type lattice.

 1.1- Modifications to an attribute of a type.

 1.1.1. Add an attribute to a type.

 1.1.2. Drop an existing attribute from a type.

 1.1.3. Change the type of an attribute.

 1.2. Modifications to an operation of a type.

 1.2.1. Add an operation to a type.

 1.2.2. Drop an existing operation from a type.

 1.2.3. Change the signature of an operation.

2.Modifications to an edge of the lattice.

 2.1. Make a type T a supertype of type S.

 2.2. Delete a parent (supertype) of a type.

3. Modifications to a node of the lattice structure.

 3.1. Add a new type.

 3.2. Delete an existing type.

Semantics of type updates

In this Section we provide a description of the semantics of the basic update operations

performed on types.

1. Modifications to the contents of a node in the type lattice.

1.1. Modifications to an attribute of a type.

Add an attribute A to a type T: this update allows the user to append an attribute

definition to a given type definition. We suppose that the added attribute A causes no

name conflicts in the type T or any of its subtypes.

 -12-

Drop an existing attribute A from a type T: this update allows the deletion of the attribute

A from the type T. A must have been defined in the type T; it is not possible to drop an

inherited attribute.

Change the type T of an attribute A: we assume that the type T of an attribute A can be

only specialized to a type T1. In other words T1 inherits from T.

1.2. Modifications to an operation of a type.

Add the operation O to the type T: This update allows the user to append the operation O

to the type T. We suppose that the added operation O causes no operations name conflicts

in the type T or any of its subtypes.

Drop the existing operation O from the type T: This update allows the deletion of the

operation O from the type T. O must have been defined in the type T; it is not possible to

drop an inherited operation.

 Change the signature S of the operation O.

a) Change the type T of the parameter p in S: This update allows the change of the type

T of the parameter p in S, to become T’. This update must be done according to the

definition3 above which ensures that the change is allowed only if T inherits from T’.

b) Change the type T of the result, if any, of the operation O: This update allows the

change of the type T of the result to become of type T’. This update is allowed only if T’

inherits from T, as stated in definition3.

c) Drop an operation parameter: This update allows the suppression of an operation

parameter. When parameters disappear from the operation O defined in the type T, this is

an indication that the objects of type T requires less information to carry out the same

service. One can assume some default value for the droped parameter.

d) Add an operation parameter: This update allows the addition of an operation

parameter. When parameters are added to the operation O defined in the type T, this is an

indication that the objects of type T requires more information to carry out the same

service.

2.Modifications to an edge of the lattice.

 -13-

2.1. Make a type T a supertype of type S: This modification is allowed only if it does not

introduce a cycle in the inheritance graph. The attributes and operations provided by T,

are inherited by S and by the subtypes of S.

2.2. Delete a parent S (supertype) of the type T: The deletion of an edge from T to S must

preserve the type lattice invariant. This must not cause the type lattice to be disconnected.

If S is the only supertype of T then the immediate supertypes of S become the supertypes

of T. T does not loose the features (attributes and operations) that were inherited from

the supertypes of S. T will only loose those features that were defined in S.

3. Modifications to a node of the lattice structure.

3.1. Add a new type T: If no supertypes of T are specified, then the type OBJECT (i.e.

the root of the type lattice) is the default supertype of T. If supertypes are specified, then

the inheritance invariants defined previously requires that all attributes and operations

from the supertypes are inherited by T. The name of the added type T must not be used

by an already defined type. The specified supertypes of T must have been previously

defined.

3.2. Delete an existing type T: The edges from the subtypes of T are dropped using

operation 2.2. The edges from T to its supertypes are aslo dropped, and T is then removed

from the lattice. If T was the type (domain) of an attribute A of another type T1, then A is

assigned a new type

4.2. Behavior Modifications

Our purpose for the modification of the behavior part of types definitions, is to extend the

existing behavior to meet new requirements. This is similar to the notion of incremental

specifications proposed for a subset of basic LOTOS language [Ichi 90]. However,

LOTOS which is an internationally standardized formal description technique designed

for the specification of OSI protocols and services, was not concerned with the object-

oriented approach. It mainly focus on the temporal ordering of events. The idea behind

incremental specifications is to obtain a new specification (i.e., a new system) by giving

additional specification descriptions to the initial existent specification description.

We believe that the most important case of change, w.r.t. the incremental approach, is the

addition of operations, we distinguish many possibilities of behavior definition

modification according to this case. The other cases of behavior modifications such as

 -14-

operation deletion may be of interest for specifications designer, but these cases will not

be addressed in this paper. The possibilities of behavior definition modifications,

presented here, are based on the language constructs which can be involved in such

modifications as described in the following sections.

The behavior of objects is to a degree dependent upon preserving structural consistency.

For instance, when an operation is called on an object, the operation associated code

(i.e.,method) to be executed is determined by the object’s type or supertypes.

Additionally, once the operation code is located, its implementation is dependent on the

called object’ structure. This structure has to be present in all objects that are instances of

the type where the operation is defined. So, changes to the type interface may lead, in

most cases, the user to change the behavior definition accordingly. Sometimes, one need

only to change the behavior definition without changing the interface. We distinguish

two categories of behavior definition change: The first category consists in changing the

behavior definition according to changes in the type interface, and the second category

consists in changing the behavior definition while the type interface remains unchanged.

4.2.1. Behavior changes according to interface changes.

In this section, we introduce, through illustrative examples, the allowed behavior

modifications where the behavioral conformance relation holds. The behavior

modifications are based on the language statements presented in Section 2.1. It is

important to note that we consider only finite behaviors for the behavior modifications

presented in this section. This restriction, to finite behaviors, allows the preservation of

the behavioral conformance relation.

a. Sequential composition.

Suppose that we want to modify the vending machine specification given in Fig.2.3, to

give a gift to its user after each purchase. We modify the type Machine‘s interface by

adding the GetGift operation. The code associated to the GetGift operation is added in

the type Machine ’s behavior definition in sequence with the existing behavior as shown

in Fig. 4.1.

 -15-

type Machine = object with
operation
 ...
 GetGift;
behavior
 ...
 procedure DeliverCandy =
 accept PushButtonAndGetCandy do
 return;
 end;
 accept GetGift do
 return;
 end;
 Ready;
 endproc DeliverCandy
endtype Machine

type User= object with
 m: Machine;
behavior
 ...
 procedure GetCandy =
 m! PushButtonAndGetCandy;
 m ! GetGift;
 Thinking;
 endproc GetCandy

endtype User

Fig. 4.1. Added operation in sequence

In this case the type Machine of Fig.2.3 is modified by adding the GetGift operation, this

leads to the modified type Machine given in Fig.4.1. The behavior definition is modified

in a way to allow the execution of theGetGift operation in sequence after the execution

of the operations defined previously. According to the temporal constraints, the GetGift

operation can be accepted only after a candy purchase. So, the modification illustrated

above is allowed according to the conform relation of definition4. Any object of type

Machine of Fig.4.1, accepts the PushButtonAndGetCandy operation as any object of the

initial type Machine. If we ignore the loop defined by the recursive call of Ready

procedure (i.e.,we consider only a finite behavior of the machine), then an object of the

modified type Machine does not block where an object of the initial type Machine does

not.

The modification of objects based on the sequential composition of behaviors, as defined

above, satisfies the consistency requirements. These requirements consists of maintaining

interfaces structural consistency and behaviors conformance as well.

b. Constrained choice operator.

It has been shown that the choice operator does not guarantee subtyping [Rudk 91],

because non-determinism can be introduced. For instance, the combination of recursion

and choice may lead to a violation of the second property of definition4. Also, if two

behaviors are combined by the choice operator, and these two behaviors have non-empty

intersection of their initial actions, then non-determinism is introduced. In the following

we distinguish two cases:

 -16-

Deterministic case

We can introduce the behavior associated with an added operation using the choice

composition operator. Suppose that we want to modify the vending machine of Fig.2.3 in

order to allow its user to buy wether a candy or a chocolate. The PushAndGetChocolate

operation is added in the type’s interface, and the behavior associated to such an

operation is introduced by mean of the choice operator as shown in Fig.4.2.

type Machine= object with
operation
 (same as in Fig.2.3.)
 PushAndGetChocolate;
behavior
 Ready
where
 procedure Ready =
 accept InsertCoin do return; end;
 choice
 DeliverCandy;
 or DeliverChocolate;
 end;
 endproc Ready

 procedure DeliverCandy =
 (same as in Fig.2.3.)
 endproc DeliverCandy

 procedure DeliverChocolate =
 accept PushAndGetChocolate do
 return;
 end;
 Ready;
 endproc DeliverChocolate

endtype Machine

type User = object with
 m: Machine;
behavior
 Thinking
where
 procedure Thinking =
 m! InsertCoin;
 GetCandy;
 endproc Thinking

 procedure GetCandy =
 m! PushButtonAndGetCandy;
 Thinking;
 endproc GetCandy

endtype User

Fig.4.2. Added operation within a choice: deterministic case

The modification illustrated above is allowed according to the structural consistency and

behavioral conformance relations of definition3 and definition4 respectively. For the

structural consistency relation, it is easy to check that the modified type Machine

interface in Fig.4.2 is structurally consistent with the initial type Machine interface

defined in Fig.2.3. For the behavioral conformance relation, both properties of

definition4 are satisfied. So, an object of the modified type Machine, accepts the same

operations in the same order as any object of the initial type Machine. Also the behavior

 -17-

of an object of the modified type Machine, does not block where an object of the initial

type Machine does not. We conclude that the behavior, defined in the modified type

Machine, conforms to the behavior defined within the initial type Machine.

Non-deterministic case

Suppose that we have a vending machine, defined by the type Machine2 that delivers

coffee as shown in Fig.4.3. The type Machine2 is defined in a similar way as the initial

type Machine of Fig.2.3. Let us consider that we modify the initial Machine in order to

also provide the behavior defined by the type Machine2. The interface of the modified

type Machine, shown in Fig4.3, is structurally consistent with both the interfaces of the

initial type Machine and of the type Machine2. However, the behavior defined by the

modified type Machine, obtained as the combination of the initial Machine and the

Machine2 behaviors, does not satisfy the second property of the behavioral conformance

relation. This is because the behavior of the modified Machine introduces non-

determinism. This non-determinism is illustrated by the existence of two branches with

the same initial action (i.e., InsertCoin operation). The introduced non-determinism can

be removed by combining the initial common actions as shown in Fig.4.4.

 -18-

type Machine2 = object with
operation
 InsertCoin;
 PushButtonAndGetCoffee;
behavior
 Ready
where
 procedure Ready =
 accept InsertCoin do
 return;
 end;
 DeliverCoffee;
 endproc Ready

 procedure DeliverCoffee =
 accept PushButtonAndGetCofee do
 return;
 end;
 Ready;
 endproc DeliverCoffee

endtype Machine2

type Machine = object with
 operation
 InsertCoin;
 PushButtonAndGetCandy;
 PushButtonAndGetCoffee;
 behavior
 Ready
 where
 procedure Ready =
 choice
 CandyProc;
 or CoffeeProc;
 end;
 endproc Ready

 procedure CandyProc=
 accept InsertCoin do return; end;
 DeliverCandy;
 endproc CandyProc

 procedure CoffeeProc=
 accept InsertCoin do return; end;
 DeliverCoffee;
 endproc CoffeeProc

 procedure DeliverCandy =
 (same as in Fig.2.2.)
 endproc DeliverCandy

 procedure DeliverCoffee=
 accept PushButtonAndGetCoffee do return;
 end;
 Ready;
 endproc DeliverCoffee
endtype Machine

Fig.4.3. Added operation within a choice: non-deterministic case.

 -19-

 procedure DeliverCandy =
 (same as in Fig.2.3.)
 endproc DeliverCandy

 procedure DeliverCoffee=
 accept PushButtonAndGetCoffee do return;
 end;
 Ready;
 endproc DeliverCoffee

endtype Machine

type Machine2 = object with
 (as before)
endtype Machine2

type Machine = object with
 operation
 (as in Fig.4.3)
 behavior
 Ready
 where
 procedure Ready =
 accept InsertCoin do return; end;
 choice
 DeliverCandy;;
 or DeliverCoffee;
 end;
 endproc Ready

Fig.4.4. Combination of common actions to remove non-determinism

c. Parallel composition.

It has been shown, for a subset of basic LOTOS language,that the behavior B obtained by

the combination of two behaviors B1 and B2, using the parallel operator, satisfy the

following properties [Ichi 90]:

- B extends B1 and B extends B2.

In a similar way, Mondel objects behaviors satisfy such properties w.r.t. the behavioral

conformance relation of definition4. So, the behavior B obtained by the combination of

two objects behaviors B1 and B2, using the parallel operator, satisfy the following

properties: B confroms to B1 and B confroms to B2.

One kind of behavior modification is the combination of two behaviors using the parallel

operator (i.e., pure interleaving). The following discussion, illustrate these properties

through the vending machine example. Suppose that we have two machines, the initial

one delivers candies (see Fig.2.3) and the second one (i.e., type Machine2) delivers

coffee as shown in Fig.4.5. We want to modify the initial machine by combining its

behavior with the behavior of the second machine, using the parallel operator. The

obtained machine (modified initial machine) should behave like both machines, it should

deliver either candies and coffee.

 -20-

type Machine2 = object with
operation
 InsertCoin2;
 PushButtonAndGetCoffee;
behavior
 Ready
where
 procedure Ready =
 accept InsertCoin2 do
 return;
 end;
 DeliverCoffee;
 endproc Ready

 procedure DeliverCoffee =
 accept PushButtonAndGetCofee do
 return;
 end;
 Ready;
 endproc DeliverCoffee

endtype Machine2

type Machine = object with
 operation
 InsertCoin;
 PushButtonAndGetCandy;
 InsertCoin2;
 PushButtonAndGetCoffee;
 behavior
 Ready
 where
 procedure Ready =
 parallel
 CandyProc;
 and CoffeeProc;
 end;
 endproc Ready

 procedure CoffeeProc=
 accept InsertCoin2 do return; end;
 DeliverCoffee;
 endproc CoffeeProc

(These procedures remains as in Fig.4.3)
 procedure CandyProc= ...
 procedure DeliverCandy = ...
 procedure DeliverCoffee= ...

endtype Machine

Fig.4.5. Parallel composition (pure interleaving).

The modification of objects based on the parallel composition of behaviors satisfy the

consistency requirements. These requirements consists of maintaining interfaces

structural consistency and behavioral conformance.

4.2.2. Behavior change while the interface remain unchanged

Another aspect of type modifications is performance enhancement. These modifications

has no impact on the interface of the modified object type. In this case only the

implementations of the operations, are modified. The modified object behavior provides

the same services, through its interface, as the old behavior (i.e., before modification).

These modifications should not lead to behaviors that blocks more than the old behavior.

In other words, these modifications should maintain the consistency requirements.

 -21-

5. Repercussions of type changes on existing instances

Transforming all instances whose type has been modified seems like the most natural

approach for dealing with change propagation. In this section we will analyze the impact

of each type modification on existing instances. In order to maintain the consistency

between types (specifications) and their instances (implementations), instances need to be

converted (physically updated) so that their structure matches the description of the the

type they belong to.

5.1. Impacts on the instances structure

1.1. Modifications to an attribute of a type.

1.1.1. Add an attribute to a type: Adding an attribute to a type leads to the logical

addition of the attribute to all instances of the type and to those of the subtypes inheriting

the attribute. A nil value is given by default to the added attribute.

1.1.2. Drop an existing attribute A from a type T: This implies the deletion of the

attribute A from all instances of the type T and from those of its subtypes. Let us note

here that removing an attribute may lead to additional problems regarding the dynamic

behavior of the affected instances. For example, an object instance I may call an

operation O accepted by the object refered by the attribute A, if the behavior of I was not

changed according to the deletion of A, then an execution problem arises. This is because

A becomes undefined within the behavior of the instance I.

1.1.3. Change the type T1 of an attribute A defined within a type T: We have seen that

the type T1 of an attribute A can only be changed by T2 a specialization of T1 . So

instances of the type T are not affected by this change because the operations accepted by

the instances of T1 remain accepted by those of T2.

1.2. Modifications to an operation of a type: There is no impact on the existing instances

of the type T. Operations appear only in the type definition. However, the modifications

of an operation of a type (addition and/or suppression of an operation, and the change of

the signature of an operation) may have an impact on the dynamic behavior of the

existing instances of the type T and those of its subtypes.

In order to allow for dynamic type modifications, we develop a technique that uses meta-

objects. More details on our implementation technique will be given in Section 6.

 -22-

5.2. Impact on the instances dynamic behavior

According to type modification, the impact of such modifications on the existing

instances dynamic behavior needs to be carefully addressed. The main question is that the

instances (implementations) should conform to their types (specifications). To ensure

behavioral conformance, the instances behaviors should be modified according to the

modifications of the behavior defined by their types. So when and how can we make

instances behaviors conversion? To answer this question, we introduces the concept of

meta-object. To each object, we associate a meta-object which is responsible for

monitoring and modifying the object’s behavior. More details on the proposed technique

will be given in the following section.

6. Reflection based implementation

To support the dynamic modification of objects structure and their behavior, we

developed RMondel, a reflective version of Mondel, to provide a framework for the

construction of flexible systems specifications [Erra 91]. In order to allow for the

construction of dynamically modifiable specifications, we need to have access, and to be

able to modify type definitions during run-time. So types are instances of TYPE, which is

a system predefined object, as shown in Fig.6.1. Note that TYPE provides primitive

operations for type modifications. More details on reflection in RMondel are the subject

of a forthcoming paper.

type TYPE = OBJECT with
 TypeName : string;
 Statdef : Statement;
operation
 New : OBJECT;
 <: (t : TYPE): boolean; {(see Fig.3)}
 AddAttr (A:Attribute);
 DelAttr(A: AttrName);
 AddOper(O:Operation);
 DelOper(O:Operation);
 AddStat(S:Statement);
 DelStat(S:Statement);
 ...
invariant
{ We define here, the constraints which must hold to maintain the system in a consistent state.These constraints define
the consistency requirements of the type lattice which corresponds to the static semantics rules checked by the Mondel
compiler.}
behavior
{ We specify here, in which order the operations, provided by an object of type TYPE, can be executed and what the
possible returned results are. }
endtype TYPE

Fig.6.1. The definition of TYPE object

 -23-

In order to manage types evolution and to maintain consistency between types and their

instances, we define two types of meta-objects which inherits from the INTERPRETER

type, as shown on Fig.6.2.

Meta(T)

type T

inst.of

inst.of

Op

Interpret Op
meta inst

INTERPRETER

Meta(o)

O

interpreted as

TYPE

Meta-of-instanceMeta-of-type

meta-of

meta-of

inst.of

inst.of

InheritInherit

Fig.6.2. Meta-Objects for type and instance dynamic modification

The INTERPRETER type defines the behavior which consists of the interpretation of

RMondel statements. An instance of the Meta-of-type type is associated to a type object,

and can hold information about the type object definition evolution. An instance of the

Meta-of-instance type, is associated to an object instance, and holds information about

the used types within the object instance behavior. The information about the types used

by the object instance behavior, will be useful for the management of the instances

conversion after the object type modification.

We assume that the modifications of a type object are done as an atomic operation, this to

ensure that no conversion is done until the whole modifications have been completed. We

assume also, that instances are converted only when they are accessed. When an

execution problem arise, due to the violation of the consistency relations, then the

recovery mechanism associated with the atomic operation, will be invoked to bring the

system to a state before the system modifications.

 -24-

For a running(i.e., in execution) object behavior, one needs information about the types

used in that behavior expressions to know if these types are changed or not. So, before

accessing an object of a given type, we have to check if the object type has been changed.

In the case where the object type has been changed, then the associated instances have to

be converted according to the modified type.

When an object type t accepts an operation, for instance the AddAttr Operation, as an

object t needs to change its state accordingly. After the addition of the attribute definition

to the type object t, then t is considered as finishing its job. As we need, some time later,

to convert the instances of t to the modified type, we define the Convert procedure

within the meta-object associated to the object type.

The type object always holds the newest definition. We define an operation CurrentDef

within the meta-object of the type, to return the current type definition. Also, let OldDef

be an attribute, of the meta-object, which holds the references list of the old versions of

the type. Before the usage of an instance i of a given type t, the t’s meta-object has to

check if there is no change in t’s definition since the last use of t. If there is a change in

the type, the conversion of its instances will be immediately invoked through the Convert

procedure defined in t’s meta-object. Once the conversion is done, the current definition

of t is added to the OldDef list. The operation CurrentDef returns the newest definition of

the type.

Two points need to be carefully addressed to ensure the system consistency according to

dynamic changes.

1- Instances conversion according to the modified type.

2- The objects behaviors using the old instances, have to be able to access the converted

instances.

In RMondel, instances conversion from old instances to new ones, can be made without

changing objects identities. We have seen how meta-objects for types are defined to store

the information related to type changes. We need to mange the use of types to allow the

use of converted instances. We define an attribute UsedType in the meta-object (i.e.

Meta-of-instance type of Fig.6.2.) of the instance the behavior of which refers to such

types.When an object’s behavior execution starts, this object’s meta-object (instance of

Meta-of-instance) calls the operation Verify on the meta-objects of the used types. The

operation Verify is defined within the Meta-of-type type, to check if some used types are

 -25-

changed. This call, may trigger instances conversion if some types are changed. We use a

pseudo Mondel to give an outline of TYPE, Meta-of-type, and Meta-of-instance types

specifications, as shown in Fig.6.3.

7.Conclusion

We have study type modifications within a persistent object-oriented language that is

particularly suitable for distributed systems modeling and specification. To ensure the

consistency of the modified system, where types dynamically change, we have

introduced two relations: structural consistency and behavioral conformance. While

structural consistency deals with the static aspect of the evolving system, the behavioral

conformance deals with the dynamic aspect of the system. For the behavioral

conformance, we plan to consider operation parameters and infinite behaviors of objects

are not addressed in this paper. A reflection based implementation has been presented,

using meta-objects, to allow dynamic modifications of types and their instances. We have

shown different cases where behavior modifications preserve the behavioral

conformance requirements. The actual effectiveness of our approach to dynamic

modification, needs to be validated. Further research is needed to address the

authorization and concurrency mechanisms in a shared environment, where more than

one user can access and modify types concurrently.

Acknowledgement

The CITR is gratefully acknowledged for their financial support.

 -26-

type TYPE = OBJECT with
 - - -
 PreviousVersion, CurrentVersion : integer
 meta : Meta-of-type;
operation
 AddAttr(A: AttrDef);
 AddOper(O:Operation);
 - - -
Behavior
 loop
 Accept AddAttr do { behavior associated to AddAttr semantics } end;
 Accept AddOper do {behavior associated to Addoper semantics } end;
 -the above behavior can be adapted for other kinds of change such as AddProc etc...
 end
endtype TYPE

type Meta-of-type = INTERPRETER with
 OldDef : sequence[TYPE];
 ChangeIndicator : var[boolean]; { true if the type has been modified }
 referent : TYPE; { the type object for which self is meta }
 Achange : sequence [Modification];
operation
 CurrentDef: TYPE;
 Verify;
 Propagate;
Behavior

 Accept Verify do
 if ChangeIndicator then
 - Update the OldDef list, by adding the current definition of referent to the
 OldDef list.
 - Update the version number of referent (increment it).
 - Convert ; {convert the instances according to the “Achange”}
 - Updatechange; {the attribute ChangeIndicator becomes false}
 - return;
 end;
 where
 procedure Convert =
 {convert instances according to the change “Achange”.}
 endproc
 procedure updatechange = - - - endproc
 procedure updateOldDef = - - - endproc

end Meta-of-type

type Meta-of-instance = INTERPRETER with
 UsedTypes : sequence[TYPE];
 referent : OBJECT; {the object for which self is meta-object }

behavior
 -check if any type t in the UsedTypes sequence was changed: t.meta!Verify
 -update the behavior of the referent object according to the UsedTypes changes.
 -update the UsedTypes:
 if a used type t was changed leading to a new type t'
 then replace t by t' in UsedTypes sequence.
end Meta-of-instance

 -27-

Fig.6.3. Meta-Objects description

References
[Amer 87] P. America, Inheritance and subtyping in a Parallel Object-Oriented Language, in
Proceedings of ECOOP'87 (AFCET), 1987, pp. 281-289.

[Amer 89] P. America, A Behavioral Approach to subtyping in object-oriented programming
languages, Philips Journal of Research, Vol.44, Nos. 2/3, pp. 365-383,1990.

[Bane 87] J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, Semantics and implementation of
schema evolution in object oriented databases, in Proceedings, ACM SIGMOD Int. Conf. On Management
of Data, San Fransisco, CA, May 1987, pp. 311-322.

[Barb 90b] M. Barbeau and G. v. Bochmann, Formal verification of Mondel Object-Oriented
Specifications Using a Coloured Petri Net Technique., In preparation.

[Blac 87] A. Black, N. Hutchinson, E. Jul, H. Levey and L. Carter, Distribution and abstract types
in Emerald, IEEE Trans. on Soft. Eng., Vol SE-13, no.1,1987, pp.65-76.

[Boch 89] G. v. Bochmann, Inheritance for objects with concurrency, Publication departementale #
687, Departement IRO, Université de Montréal, Septembre 89.

[Boch 90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval and N.
Williams, Mondel: An Object-Oriented Specification Language, Publication departementale #748,
Departement IRO, Université de Montréal, November 90.,

[Brin 86] E. Brinksma and G. Scollo, Lotos specifications, their implementations and their tests,
Protocol Specification, Testing and Verification VI (IFIP Workshop, Montreal, 1986), North Holland
Publ., pp. 349-360.

[Delc 91] C. Delcourt and R. Zicari, The design of an integrity consistency checker (ICC) for an
object oriented database system, ECOOP'91.

[Erra 91] M. Erradi, G. v. Bochmann and I. Hamid, Dynamic Modifications of Object-Oriented
Specifications, To appear in CompEurop'92, Int. Conf. on Computer Systems and software Engineering.

[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS, PSTV'90. pp. 185-
200.

[Kram 85] J. Kramer and J. Magee, Dynamic Configuration for distributed systems, Trans. on Soft.
Eng. Vol. SE-11, No. 4, pp.424-436.

[Lern 90] B. S. Lerner and A. N. Haberman, Beyond Schema evolution to database reorganozation,
OOPSLA conf. Ottawa 1990.

[Meye 88] B. Meyer, Object Oriented Software Construction, C.A.R. Hoare Series Editor, Prentice
Hall, 1988.

[Jaco 87] D. J. Penney and J. Stein, Class Modification in the GemStone object-oriented DBMS,
OOPSLA, pp.111-117.

[Plot 81] G. D. Plotkin, A Structural Approach to Operational Semantics, Aarhus University,
Report DAIMI FN-19, 1981.

[Rudk 91] S. Rudkin, Inheritance in LOTOS, 4th. Int. Conf. on Formal Description Techniques.
FORTE'91, pp. 415-430.

 -28-

[Skar 87] A. H. Skarra and S. B. Zdonik, Type evolution in an Object-Oriented Databases,
Research directions in object-oriented programming, Wegner, Bruce Shriver and Peter, MIT press, pp.393-
415.

[Viss 88] C. Vissers, G. Scollo and M. v. Sinderen, Architecture and Specification Style in Formal
Descriptions of Distributed Systems, Proc. IFIP Symposium on Prot. Spec., Verif. and Testing, Atlantic
City, 1988.

[Will 90] N. Williams, Un simulateur pour un langage de spécification orienté-objet, MSc thesis,
Université de Montréal,

